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The following section will give a brief overview of the theory underlying MOPAC, with an emphasis on enough
knowledge to understand in a practical sense how MOPAC functions. This is of course a wide subject, so, for
more details, please explore other resources, such as the MOPAC website at http://www.openmopac.net [1],
or any of the excellent books on the topic.

1 Hartree-Fock Theory

MOPAC is a semiempirical code for calculating the electronic structure of molecules and solids. It is based
on the Hartree-Fock method, which is an approximate method for solving the electronic wavefunction. The
basic equation that MOPAC solves is the secular equation

𝐶𝑖|𝐹 − 𝑒𝑖𝑆|𝐶𝑖 = 0 (1)

where 𝐶𝑖 are the coefficients of the orbitals, 𝐹 , the Fock matrix, 𝑒𝑖, the eigenvalues,and 𝑆, the overlap matrix.
The Fock matrix depends on the orbitals. So, the above equation is a set of nonlinear equations that must be
solved iteratively. The underlying idea is that each electron moves independently in the field of the remaining
electrons. In each iteration, this field is adjusted and if the iterations converge to the solution, the field is
self-consistent, which leads to the other name for this process: SCF, for self -consistent field.

The energy is given by 𝐸 =
1

2
𝑃 (𝐻 + 𝐹 )

where P is the density matrix and H, the one-electron matrix. The general Fock matrix element is

𝐹 𝑎
𝑚𝑛 = 𝐻𝑚𝑛 + 𝑆𝑂𝑆𝑃

[︀
𝑃 𝑎+𝑏
𝑚𝑛 ⟨𝑚𝑛|𝑜𝑝⟩ − 𝑃 𝑎

𝑚𝑛⟨𝑚𝑜|𝑛𝑝⟩
]︀

(2)

1.1 Approximations in MOPAC

So far, these equations have been quite general. They apply to any Hartree-Fock or SCF program. Here
is where MOPAC makes some approximations that are different from other programs. First, the orbitals are
expanded in terms of atomic orbitals. MOPAC uses a minimum basis consisting of one atomic orbital for each
orbital quantum number. So, for example, second-row elements are described by one 𝑆 and three 𝑝 orbitals
(𝑝𝑥, 𝑝𝑦, and 𝑝𝑧).

The second larger approximation is the n eglect of d iatomic d ifferential o verlap (NDDO). All terms arising
from the overlap of two atomic orbitals that are on different centers are neglected, i.e., set to zero. In addition,
all two-electron integrals involving charge clouds arising from the overlap of two atomic orbitals on different
centers are ignored. This is a huge simplification. Although it may not be obvious, the two terms ⟨𝑚𝑛|𝑜𝑝⟩ and
⟨𝑚𝑜|𝑛𝑝⟩ are integrals over the atomic orbitals up to four centers. While there are on the order of 𝑁2 one and

[1] http://www.openmopac.net/
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two center integrals, there are 𝑁4 three and four center integrals, where 𝑁 is the number of atomic orbitals in
the basis. For a moderate size molecule, there may be hundreds or thousands of atomic orbitals in the basis
set, and 𝑁4 becomes a very large number of integrals to compute.

MOPAC, using this concept of neglect of diatomic differential overlap, throws out this huge number of integrals.
A so-called ab initio Hartree-Fock code calculates all of these 𝑁4 integrals, using them to calculate the Fock
matrix in Equation (2). Since MOPAC ignores all but 𝑁2 of the integrals, it is much faster than the ab initio
code. However, to make up for what it has thrown away, MOPAC uses parameterizations for the remaining
integrals, hence the name semiempirical. MOPAC neither calculates everything from first principles, as an
ab initio code would do, nor does it just use empirical correlations. It is based on the rigorous theory of the
ab initio methods but parameterizes the integrals, hence the name semiempirical, though it could as well be
thought of as semi ab initio!

1.2 Parameterizations

MOPAC supports a variety of parameterizations:

Parametrization Description
MNDO Modified Neglect of Differential Overlap; Dewar &

Thiel [2]
AM1 Austin Model 1; Dewar, Zoebisch, Healy & Stew-

art [3]
MNDO-d MNDO with d orbitals; Thiel & Voityuk [4]
PM3 MNDO, Parametric Method 3; Stewart [5]
PM6 MNDO, Parametric Method 6; Stewart [6]
PM7 MNDO, Parametric Method 7; Stewart [7]
RM1 Recife Model 1; developed by Rocha, Freire, Simas

& Stewart [8] in Recife, Brazil

Just for completeness, there are more approximate methods such as CNDO (Complete Neglect of Differential
Overlap), which ignore all terms involving two different atomic orbitals, even if they are on one atom.

So now that we have indicated the different methods available in MOPAC, a comment: PM7 is the most
recent and generally best parameterization, and as such is the default in MOPAC. PM7 is parameterized
to reproduce with good accuracy the thermochemistry of organic and inorganic molecules and solids. PM6
gives slightly better thermochemistry results for organic molecules. RM1 is slightly more appropriate for
electronic properties of organic and bio-organic molecules than PM7. Depending on the property and nature
of the system, it is best to test which semiempirical method is the most relevant. Unless you have reason to
use another parameterization, stay with PM7.

1.3 Restricted and Unrestricted Hartree-Fock

One other point to be made is the handling of spin. For a closed shell system, there is not too much to
consider: each molecular orbital is occupied with two electrons, one with spin up, the other down. However,

[2] Michael J S Dewar and Walter Thiel, “Ground States of Molecules. 38. the MNDO Method. Approximations and Parameters,” Journal
of the American Chemical Society 99, no. 15 (June 1977): 4899-4907.

[3] Michael J S Dewar, Eve G Zoebisch, Eamonn F Healy, and James J P Stewart, “AM1: a New General Purpose Quantum Mechanical
Molecular Model,” Journal of the American Chemical Society 107, no. 13 (June 1985): 3902-3909.

[4] Walter Thiel and Alexander A Voityuk, “Extension of the MNDO Formalism to D Orbitals: Integral Approximations and Preliminary
Numerical Results,” Theoretical Chemistry Accounts: Theory 81, no. 6 (1992): 391-404. Walter Thiel and Alexander A Voityuk,
“Extension of MNDO to D Orbitals: Parameters and Results for the Second-Row Elements and for the Zinc Group,” Journal of
Physical Chemistry 100, no. 2 (January 1996): 616-626.

[5] James J P Stewart, “Optimization of Parameters for Semiempirical Methods I. Method,” Journal of Computational Chemistry 10, no.
2 (March 1989): 209-220.

[6] James J P Stewart, “Optimization of Parameters for Semiempirical Methods v: Modification of NDDO Approximations and Application
to 70 Elements,” Journal of Molecular Modeling 13, no. 12 (September 9, 2007): 1173-1213.

[7] James J P Stewart, “Optimization of Parameters for Semiempirical Methods vi: More Modifications to the NDDO Approximations
and Re-optimization of Parameters,” Journal of Molecular Modeling 19, no. 1 (January 2013): 1-32.

[8] Gerd B Rocha, Ricardo O Freire, Alfredo M Simas, and James J P Stewart, “RM1: a Reparameterization of AM1 for H, C, N, O, P, S,
F, Cl, Br, and I,” Journal of Computational Chemistry 27, no. 10 (2006): 1101-1111.
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the situation is more complicated when there are unpaired electrons. Consider, for example, a triplet state,
with two unpaired electrons, both with spin up. In the Hartree-Fock equations, we have two choices. We can
use the same orbitals for both up and down spins when the occupancy is two electrons, and then add the
two orbitals with the unpaired electrons to complete the set of occupied orbitals. Alternatively, we can allow
different orbitals for the up and down spins, leading to a pair of secular equations similar to eq. (1)

𝐶𝛼
𝑖 |𝐹𝛼− 𝑒𝛼𝑖 𝑆|𝐶𝛼

𝑖 = 0

𝐶𝛽
𝑖 |𝐹𝛽 − 𝑒𝛽𝑖 𝑆|𝐶

𝛽
𝑖 = 0

(3)

where 𝛼 and 𝛽 are the two spins. These equations are coupled because the individual electrons move in the
field of all the other electrons. This enters the Fock matrices through the density matrix.

The first approach, with the same orbitals for both spins, is called restricted Hartree-Fock (RHF). The second
approach, with differing orbitals for different spins, is called unrestricted Hartree-Fock (UHF). UHF is simpler
to work with, and has some advantages. However, it does not represent a true spin state. In our example of
a triplet, the expectation value of the spin, squared, ⟨𝑆2 = 𝑆(𝑆 + 1)⟩ should be 2, but in a UHF calculation
it will be larger due to contamination by the quintet state. RHF corrects this, guaranteeing that the state is
a pure spin state. RHF has the disadvantage that if you stretch a bond to breaking, RHF cannot reasonably
describe the unpairing of the electrons, leading to a nonphysical increasing energy for large bond distances.
UHF does describe this better, with the dissociated limit usually being correct, though the energy curves at
intermediate distances may still be somewhat wrong.

The graph illustrates this point for 𝐻2. Plotted in blue is the RHF energy vs. the bond length; in orange, UHF.
At the bottom of the graph, in red, is ⟨𝑆2⟩ for the UHF wavefunction plotted against the right axis. The UHF
and RHF solutions are identical to well beyond the equilibrium bond length of about 0.75 Å. Past about 1.3
Å the UHF energy diverges from the RHF energy, and the spin differs from zero. At long distances, the UHF
solution has flattened out, with a spin of 1 indicating a triplet: one electron on each H atom both with spin up.
The bond energy from MOPAC using UHF is about 540 kJ/mol, which is similar to but noticeably larger than
the experimental value of 440 kJ/mol. Clearly, the RHF result is not physical.

2 Minimization

MOPAC provides different methods for minimizing the energy of a structure. The default method for smaller
systems is the eigenvalue following (EF) method [9]. When minimizing the energy, the EF method is es-
sentially a simple Newton-Raphson method with some clever schemes to make sure that it does not take
a random large step. Since it is working with the Hessian matrix, the EF method is limited to systems that
aren’t too large - by default no more than 2000 degrees of freedom. The EF method can either start with
an approximate Hessian or can calculate it, and can also be set to recalculate the Hessian every so often.
Usually, for minimization, it works well enough, never calculating the Hessian that it is not worth the extra cost
of calculating even the initial Hessian.

[9] Jon Baker, “An Algorithm for the Location of Transition States,” Journal of Computational Chemistry 7, no. 4 (1986): 385-395.
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The second major approach to minimization is the Broyden [10]-Fletcher [11]-Goldfarb [12]-Shanno [13]
(BFGS) method, which is one of a class of quasi-Newton methods, where an initial approximation to the
Hessian is updated as the minimization progresses, eventually leading towards quadratic convergence at the
end. Again, the implementation in MOPAC uses clever techniques for the line search and for limiting the step
length to make the method quite robust.

As in the EF method, the BFGS method relies on keeping a copy of the Hessian matrix in memory, limiting
its applicability to large systems. MOPAC provides another variant, the limited memory BFGS (L-BFGS)
method [14]. Rather than storing the complete Hessian matrix, the L-BFGS method stores information from
the last several iterations and implicitly creates the Hessian from this more limited information. This is the
default method in MOPAC for systems with more than 2000 degrees of freedom.

3 Vibrational Frequencies

Starting with the basics, the vibration of a mass on a spring is given by
𝑟 = 2𝜋

√︂
𝜇

𝑘

where 𝑟 is the period of the oscillator, 𝑚 is the mass and 𝑘 is the force constant. In chemistry, we tend to
express the frequency in terms of wavenumbers, i.e., the number of wavelengths in 1 cm:

𝜈 =
1

2𝜋𝑐

√︃
𝑘

𝜇
(4)

where 𝐶 is the speed of light in the appropriate units.

When we generalize this to a molecule, we need the Hessian, or force-constant matrix:
𝐻𝑖,𝑗 =

𝜕2𝐸

𝜕𝑥𝑖𝜕𝑥𝑗

where 𝐸 is the energy and 𝑥𝑖 and 𝑥𝑗 are the (Cartesian) coordinates of the atoms. MOPAC calculates
the Hessian by finite differences of the first derivatives, which it can calculate analytically. To calculate the
vibrational frequencies, we need the mass-weighted Hessian:𝐻𝑚

𝑖𝑗 =
𝐻𝑖,𝑗√︀
𝑀𝑖𝑀𝑗

This is then diagonalized to produce the eigenvalues 𝜖𝑖 and the eigenvectors, which are the mass-weighted
normal modes. The frequencies are obtained from an equation analogous to Equation (4):𝜈 =

1

2𝜋𝑐

√
𝜖𝑖

At this point, MOPAC has calculated both the frequencies and the normal modes of the molecule.

[10] C G Broyden, “The Convergence of a Class of Double-Rank Minimization Algorithms,” IMA Journal of Applied Mathematics 6, no.
3 (1970): 222-231.

[11] R Fletcher, “A New Approach to Variable Metric Algorithms,” The Computer Journal 13, no. 3 (March 1, 1970): 317-322.
[12] Donald Goldfarb, “A Family of Variable-Metric Methods Derived by Variational Means,” Mathematics of Computation 24, no. 109

(January 1, 1970): 23-23.
[13] DF Shanno, “Conditioning of Quasi-Newton Methods for Function Minimization,” Mathematics of Computation 24, no. 111 (1970):

647-656.
[14] Hermann Matthies and Gilbert Strang, “The Solution of Nonlinear Finite Element Equations,” International Journal for Numerical

Methods in Engineering 14, no. 11 (1979): 1613-1626. Jorge Nocedal, “Updating Quasi-Newton Matrices with Limited Storage,”
Mathematics of Computation 35, no. 151 (July 1980): 773-782.
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