vasp.6.3.2 27Jun22 (build Jan 12 2023 12:08:26) complex                        
  
 MD_VERSION_INFO: Compiled 2023-01-12T11:37:00-UTC in mrdevlin:/home/medea/data/
 build/vasp6.3.2/18368/x86_64/src/src/build/std from svn 18368
 
 This VASP executable licensed from Materials Design, Inc.
 
 executed on                        Lin64 date 2023.05.07  00:23:07
 running on    4 total cores
 distrk:  each k-point on    4 cores,    1 groups
 distr:  one band on NCORE=   1 cores,    4 groups


--------------------------------------------------------------------------------------------------------


 INCAR:
   SYSTEM = (SiO2)2  GW0
   PREC = Normal
   ENCUT = 400.000
   IBRION = -1
   NSW = 0
   ISIF = 2
   NELMIN = 2
   EDIFF = 1e-08
   EDIFFG = -0.02
   VOSKOWN = 1
   NBLOCK = 1
   NWRITE = 1
   NELM = 60
   LHFCALC = .TRUE.
   HFSCREEN = 0.2
   PRECFOCK = Normal
   ALGO = Damped
   TIME = 0.4
   LMAXFOCK = 4
   NKREDX = 1
   NKREDY = 1
   NKREDZ = 1
   ISPIN = 1
   INIWAV = 1
   ISTART = 1
   NBANDS = 120
   ICHARG = 0
   LWAVE = .TRUE.
   LCHARG = .TRUE.
   ADDGRID = .FALSE.
   ISMEAR = 1
   SIGMA = 0.2
   LREAL = .FALSE.
   LSCALAPACK = .FALSE.
   RWIGS = 1.11 0.73
   NPAR = 4

 POTCAR:    PAW_PBE Si 05Jan2001                  
 POTCAR:    PAW_PBE O 08Apr2002                   
 POTCAR:    PAW_PBE Si 05Jan2001                  
  local pseudopotential read in
  partial core-charges read in
  partial kinetic energy density read in
  atomic valenz-charges read in
  non local Contribution for L=           0  read in
    real space projection operators read in
  non local Contribution for L=           0  read in
    real space projection operators read in
  non local Contribution for L=           1  read in
    real space projection operators read in
  non local Contribution for L=           1  read in
    real space projection operators read in
    PAW grid and wavefunctions read in
 
   number of l-projection  operators is LMAX  =           4
   number of lm-projection operators is LMMAX =           8
 
 POTCAR:    PAW_PBE O 08Apr2002                   
  local pseudopotential read in
  partial core-charges read in
  partial kinetic energy density read in
  kinetic energy density of atom read in
  atomic valenz-charges read in
  non local Contribution for L=           0  read in
    real space projection operators read in
  non local Contribution for L=           0  read in
    real space projection operators read in
  non local Contribution for L=           1  read in
    real space projection operators read in
  non local Contribution for L=           1  read in
    real space projection operators read in
    PAW grid and wavefunctions read in
 
   number of l-projection  operators is LMAX  =           4
   number of lm-projection operators is LMMAX =           8
 
  PAW_PBE Si 05Jan2001                  :
 energy of atom  1       EATOM= -103.0669
 kinetic energy error for atom=    0.0012 (will be added to EATOM!!)
  PAW_PBE O 08Apr2002                   :
 energy of atom  2       EATOM= -432.3788
 kinetic energy error for atom=    0.1156 (will be added to EATOM!!)
 
 
 POSCAR: (SiO2)2  GW0
  positions in direct lattice
  No initial velocities read in
 exchange correlation table for  LEXCH =        8
   RHO(1)=    0.500       N(1)  =     2000
   RHO(2)=  100.500       N(2)  =     4000
 


--------------------------------------------------------------------------------------------------------


 ion  position               nearest neighbor table
   1  0.000  0.000  0.000-   4 1.75   5 1.75   4 1.75   5 1.75   3 1.81   6 1.81
   2  0.500  0.500  0.500-   3 1.75   6 1.75   3 1.75   6 1.75   5 1.81   4 1.81
   3  0.307  0.307  0.000-   2 1.75   2 1.75   1 1.81
   4  0.807  0.193  0.500-   1 1.75   1 1.75   2 1.81
   5  0.193  0.807  0.500-   1 1.75   1 1.75   2 1.81
   6  0.693  0.693  0.000-   2 1.75   2 1.75   1 1.81
 
  LATTYP: Found a simple tetragonal cell.
 ALAT       =     4.1738000000
 C/A-ratio  =     0.6388183430
  
  Lattice vectors:
  
 A1 = (   4.1738000000,   0.0000000000,   0.0000000000)
 A2 = (   0.0000000000,   4.1738000000,   0.0000000000)
 A3 = (   0.0000000000,   0.0000000000,   2.6663000000)


Analysis of symmetry for initial positions (statically):
=====================================================================
 Subroutine PRICEL returns:
 Original cell was already a primitive cell.
 

 Routine SETGRP: Setting up the symmetry group for a 
 simple tetragonal supercell.


 Subroutine GETGRP returns: Found 16 space group operations
 (whereof  8 operations were pure point group operations)
 out of a pool of 16 trial point group operations.


The static configuration has the point symmetry D_2h.
 The point group associated with its full space group is D_4h.


Analysis of symmetry for dynamics (positions and initial velocities):
=====================================================================
 Subroutine PRICEL returns:
 Original cell was already a primitive cell.
 

 Routine SETGRP: Setting up the symmetry group for a 
 simple tetragonal supercell.


 Subroutine GETGRP returns: Found 16 space group operations
 (whereof  8 operations were pure point group operations)
 out of a pool of 16 trial point group operations.


The dynamic configuration has the point symmetry D_2h.
 The point group associated with its full space group is D_4h.


 Subroutine INISYM returns: Found 16 space group operations
 (whereof  8 operations are pure point group operations),
 and found     1 'primitive' translations


----------------------------------------------------------------------------------------

                                     Primitive cell                                     

  volume of cell :      46.4486

  direct lattice vectors                    reciprocal lattice vectors
     4.173800000  0.000000000  0.000000000     0.239589822  0.000000000  0.000000000
     0.000000000  4.173800000  0.000000000     0.000000000  0.239589822  0.000000000
     0.000000000  0.000000000  2.666300000     0.000000000  0.000000000  0.375051570

  length of vectors
     4.173800000  4.173800000  2.666300000     0.239589822  0.239589822  0.375051570

  position of ions in fractional coordinates (direct lattice)
     0.000000000  0.000000000  0.000000000
     0.500000000  0.500000000  0.500000000
     0.306700000  0.306700000  0.000000000
     0.806700000  0.193300000  0.500000000
     0.193300000  0.806700000  0.500000000
     0.693300000  0.693300000  0.000000000

  ion indices of the primitive-cell ions
   primitive index   ion index
                 1           1
                 2           2
                 3           3
                 4           4
                 5           5
                 6           6

----------------------------------------------------------------------------------------

 
 
 KPOINTS: Automatic mesh                          

Automatic generation of k-mesh.
 Grid dimensions read from file:
 generate k-points for:    4    4    5

 Generating k-lattice:

  Cartesian coordinates                     Fractional coordinates (reciprocal lattice)
     0.059897456  0.000000000  0.000000000     0.250000000  0.000000000  0.000000000
     0.000000000  0.059897456  0.000000000     0.000000000  0.250000000  0.000000000
     0.000000000  0.000000000  0.075010314     0.000000000  0.000000000  0.200000000

  Length of vectors
     0.059897456  0.059897456  0.075010314

  Shift w.r.t. Gamma in fractional coordinates (k-lattice)
     0.000000000  0.000000000  0.000000000

 
 Subroutine IBZKPT returns following result:
 ===========================================
 
 Found     18 irreducible k-points:
 
 Following reciprocal coordinates:
            Coordinates               Weight
  0.000000  0.000000  0.000000      1.000000
  0.250000  0.000000  0.000000      4.000000
  0.500000  0.000000  0.000000      2.000000
  0.250000  0.250000  0.000000      4.000000
  0.500000  0.250000  0.000000      4.000000
  0.500000  0.500000  0.000000      1.000000
  0.000000  0.000000  0.200000      2.000000
  0.250000  0.000000  0.200000      8.000000
  0.500000  0.000000  0.200000      4.000000
  0.250000  0.250000  0.200000      8.000000
  0.500000  0.250000  0.200000      8.000000
  0.500000  0.500000  0.200000      2.000000
  0.000000  0.000000  0.400000      2.000000
  0.250000  0.000000  0.400000      8.000000
  0.500000  0.000000  0.400000      4.000000
  0.250000  0.250000  0.400000      8.000000
  0.500000  0.250000  0.400000      8.000000
  0.500000  0.500000  0.400000      2.000000
 
 Following cartesian coordinates:
            Coordinates               Weight
  0.000000  0.000000  0.000000      1.000000
  0.059897  0.000000  0.000000      4.000000
  0.119795  0.000000  0.000000      2.000000
  0.059897  0.059897  0.000000      4.000000
  0.119795  0.059897  0.000000      4.000000
  0.119795  0.119795  0.000000      1.000000
  0.000000  0.000000  0.075010      2.000000
  0.059897  0.000000  0.075010      8.000000
  0.119795  0.000000  0.075010      4.000000
  0.059897  0.059897  0.075010      8.000000
  0.119795  0.059897  0.075010      8.000000
  0.119795  0.119795  0.075010      2.000000
  0.000000  0.000000  0.150021      2.000000
  0.059897  0.000000  0.150021      8.000000
  0.119795  0.000000  0.150021      4.000000
  0.059897  0.059897  0.150021      8.000000
  0.119795  0.059897  0.150021      8.000000
  0.119795  0.119795  0.150021      2.000000
 
 
 Subroutine IBZKPT_HF returns following result:
 ==============================================
 
 Found     80 k-points in 1st BZ
 the following     80 k-points will be used (e.g. in the exchange kernel)
 Following reciprocal coordinates:   # in IRBZ
  0.000000  0.000000  0.000000    0.01250000   1 t-inv F
  0.250000  0.000000  0.000000    0.01250000   2 t-inv F
  0.500000  0.000000  0.000000    0.01250000   3 t-inv F
  0.250000  0.250000  0.000000    0.01250000   4 t-inv F
  0.500000  0.250000  0.000000    0.01250000   5 t-inv F
  0.500000  0.500000  0.000000    0.01250000   6 t-inv F
  0.000000  0.000000  0.200000    0.01250000   7 t-inv F
  0.250000  0.000000  0.200000    0.01250000   8 t-inv F
  0.500000  0.000000  0.200000    0.01250000   9 t-inv F
  0.250000  0.250000  0.200000    0.01250000  10 t-inv F
  0.500000  0.250000  0.200000    0.01250000  11 t-inv F
  0.500000  0.500000  0.200000    0.01250000  12 t-inv F
  0.000000  0.000000  0.400000    0.01250000  13 t-inv F
  0.250000  0.000000  0.400000    0.01250000  14 t-inv F
  0.500000  0.000000  0.400000    0.01250000  15 t-inv F
  0.250000  0.250000  0.400000    0.01250000  16 t-inv F
  0.500000  0.250000  0.400000    0.01250000  17 t-inv F
  0.500000  0.500000  0.400000    0.01250000  18 t-inv F
 -0.250000  0.000000  0.000000    0.01250000   2 t-inv F
  0.000000  0.250000  0.000000    0.01250000   2 t-inv F
  0.000000 -0.250000  0.000000    0.01250000   2 t-inv F
  0.000000  0.500000  0.000000    0.01250000   3 t-inv F
 -0.250000 -0.250000  0.000000    0.01250000   4 t-inv F
 -0.250000  0.250000  0.000000    0.01250000   4 t-inv F
  0.250000 -0.250000  0.000000    0.01250000   4 t-inv F
 -0.500000 -0.250000  0.000000    0.01250000   5 t-inv F
  0.250000  0.500000  0.000000    0.01250000   5 t-inv F
 -0.250000 -0.500000  0.000000    0.01250000   5 t-inv F
  0.000000  0.000000 -0.200000    0.01250000   7 t-inv F
 -0.250000  0.000000 -0.200000    0.01250000   8 t-inv F
 -0.250000  0.000000  0.200000    0.01250000   8 t-inv F
  0.250000  0.000000 -0.200000    0.01250000   8 t-inv F
  0.000000  0.250000 -0.200000    0.01250000   8 t-inv F
  0.000000 -0.250000  0.200000    0.01250000   8 t-inv F
  0.000000 -0.250000 -0.200000    0.01250000   8 t-inv F
  0.000000  0.250000  0.200000    0.01250000   8 t-inv F
 -0.500000  0.000000 -0.200000    0.01250000   9 t-inv F
  0.000000  0.500000 -0.200000    0.01250000   9 t-inv F
  0.000000 -0.500000  0.200000    0.01250000   9 t-inv F
 -0.250000 -0.250000 -0.200000    0.01250000  10 t-inv F
 -0.250000 -0.250000  0.200000    0.01250000  10 t-inv F
  0.250000  0.250000 -0.200000    0.01250000  10 t-inv F
 -0.250000  0.250000  0.200000    0.01250000  10 t-inv F
  0.250000 -0.250000 -0.200000    0.01250000  10 t-inv F
  0.250000 -0.250000  0.200000    0.01250000  10 t-inv F
 -0.250000  0.250000 -0.200000    0.01250000  10 t-inv F
 -0.500000 -0.250000 -0.200000    0.01250000  11 t-inv F
 -0.500000 -0.250000  0.200000    0.01250000  11 t-inv F
  0.500000  0.250000 -0.200000    0.01250000  11 t-inv F
  0.250000  0.500000 -0.200000    0.01250000  11 t-inv F
 -0.250000 -0.500000  0.200000    0.01250000  11 t-inv F
 -0.250000 -0.500000 -0.200000    0.01250000  11 t-inv F
  0.250000  0.500000  0.200000    0.01250000  11 t-inv F
 -0.500000 -0.500000 -0.200000    0.01250000  12 t-inv F
  0.000000  0.000000 -0.400000    0.01250000  13 t-inv F
 -0.250000  0.000000 -0.400000    0.01250000  14 t-inv F
 -0.250000  0.000000  0.400000    0.01250000  14 t-inv F
  0.250000  0.000000 -0.400000    0.01250000  14 t-inv F
  0.000000  0.250000 -0.400000    0.01250000  14 t-inv F
  0.000000 -0.250000  0.400000    0.01250000  14 t-inv F
  0.000000 -0.250000 -0.400000    0.01250000  14 t-inv F
  0.000000  0.250000  0.400000    0.01250000  14 t-inv F
 -0.500000  0.000000 -0.400000    0.01250000  15 t-inv F
  0.000000  0.500000 -0.400000    0.01250000  15 t-inv F
  0.000000 -0.500000  0.400000    0.01250000  15 t-inv F
 -0.250000 -0.250000 -0.400000    0.01250000  16 t-inv F
 -0.250000 -0.250000  0.400000    0.01250000  16 t-inv F
  0.250000  0.250000 -0.400000    0.01250000  16 t-inv F
 -0.250000  0.250000  0.400000    0.01250000  16 t-inv F
  0.250000 -0.250000 -0.400000    0.01250000  16 t-inv F
  0.250000 -0.250000  0.400000    0.01250000  16 t-inv F
 -0.250000  0.250000 -0.400000    0.01250000  16 t-inv F
 -0.500000 -0.250000 -0.400000    0.01250000  17 t-inv F
 -0.500000 -0.250000  0.400000    0.01250000  17 t-inv F
  0.500000  0.250000 -0.400000    0.01250000  17 t-inv F
  0.250000  0.500000 -0.400000    0.01250000  17 t-inv F
 -0.250000 -0.500000  0.400000    0.01250000  17 t-inv F
 -0.250000 -0.500000 -0.400000    0.01250000  17 t-inv F
  0.250000  0.500000  0.400000    0.01250000  17 t-inv F
 -0.500000 -0.500000 -0.400000    0.01250000  18 t-inv F


--------------------------------------------------------------------------------------------------------




 Dimension of arrays:
   k-points           NKPTS =     18   k-points in BZ     NKDIM =     80   number of bands    NBANDS=    120
   number of dos      NEDOS =    301   number of ions     NIONS =      6
   non local maximal  LDIM  =      4   non local SUM 2l+1 LMDIM =      8
   total plane-waves  NPLWV =   5600
   max r-space proj   IRMAX =      1   max aug-charges    IRDMAX=   4230
   dimension x,y,z NGX =    20 NGY =   20 NGZ =   14
   dimension x,y,z NGXF=    40 NGYF=   40 NGZF=   28
   support grid    NGXF=    40 NGYF=   40 NGZF=   28
   ions per type =               2   4
   NGX,Y,Z   is equivalent  to a cutoff of   7.97,  7.97,  8.73 a.u.
   NGXF,Y,Z  is equivalent  to a cutoff of  15.93, 15.93, 17.46 a.u.

 SYSTEM =  (SiO2)2  GW0                            
 POSCAR =  (SiO2)2  GW0                            

 Startparameter for this run:
   NWRITE =      1    write-flag & timer
   PREC   = normal    normal or accurate (medium, high low for compatibility)
   ISTART =      1    job   : 0-new  1-cont  2-samecut
   ICHARG =      0    charge: 1-file 2-atom 10-const
   ISPIN  =      1    spin polarized calculation?
   LNONCOLLINEAR =      F non collinear calculations
   LSORBIT =      F    spin-orbit coupling
   INIWAV =      1    electr: 0-lowe 1-rand  2-diag
   LASPH  =      F    aspherical Exc in radial PAW
 Electronic Relaxation 1
   ENCUT  =  400.0 eV  29.40 Ry    5.42 a.u.   6.81  6.81  4.35*2*pi/ulx,y,z
   ENINI  =  400.0     initial cutoff
   ENAUG  =  605.4 eV  augmentation charge cutoff
   NELM   =     60;   NELMIN=  2; NELMDL=  0     # of ELM steps 
   EDIFF  = 0.1E-07   stopping-criterion for ELM
   LREAL  =      F    real-space projection
   NLSPLINE    = F    spline interpolate recip. space projectors
   LCOMPAT=      F    compatible to vasp.4.4
   GGA_COMPAT  = T    GGA compatible to vasp.4.4-vasp.4.6
   LMAXPAW     = -100 max onsite density
   LMAXMIX     =    2 max onsite mixed and CHGCAR
   VOSKOWN=      1    Vosko Wilk Nusair interpolation
   ROPT   =    0.00000   0.00000
 Ionic relaxation
   EDIFFG = -.2E-01   stopping-criterion for IOM
   NSW    =      0    number of steps for IOM
   NBLOCK =      1;   KBLOCK =      1    inner block; outer block 
   IBRION =     -1    ionic relax: 0-MD 1-quasi-New 2-CG
   NFREE  =      0    steps in history (QN), initial steepest desc. (CG)
   ISIF   =      2    stress and relaxation
   IWAVPR =     10    prediction:  0-non 1-charg 2-wave 3-comb
   ISYM   =      3    0-nonsym 1-usesym 2-fastsym
   LCORR  =      T    Harris-Foulkes like correction to forces

   POTIM  = 0.5000    time-step for ionic-motion
   TEIN   =    0.0    initial temperature
   TEBEG  =    0.0;   TEEND  =   0.0 temperature during run
   SMASS  =  -3.00    Nose mass-parameter (am)
   estimated Nose-frequenzy (Omega)   =  0.10E-29 period in steps = 0.13E+47 mass=  -0.398E-27a.u.
   SCALEE = 1.0000    scale energy and forces
   NPACO  =    256;   APACO  = 10.0  distance and # of slots for P.C.
   PSTRESS=    0.0 pullay stress

  Mass of Ions in am
   POMASS =  28.09 16.00
  Ionic Valenz
   ZVAL   =   4.00  6.00
  Atomic Wigner-Seitz radii
   RWIGS  =   1.11  0.73
  virtual crystal weights 
   VCA    =   1.00  1.00
   NELECT =      32.0000    total number of electrons
   NUPDOWN=      -1.0000    fix difference up-down

 DOS related values:
   EMIN   =  10.00;   EMAX   =-10.00  energy-range for DOS
   EFERMI =   0.00
   ISMEAR =     1;   SIGMA  =   0.20  broadening in eV -4-tet -1-fermi 0-gaus

 Electronic relaxation 2 (details)
   IALGO  =     53    algorithm
   LDIAG  =      T    sub-space diagonalisation (order eigenvalues)
   LSUBROT=      F    optimize rotation matrix (better conditioning)
   TURBO    =      0    0=normal 1=particle mesh
   IRESTART =      0    0=no restart 2=restart with 2 vectors
   NREBOOT  =      0    no. of reboots
   NMIN     =      0    reboot dimension
   EREF     =   0.00    reference energy to select bands
   IMIX   =      4    mixing-type and parameters
     AMIX     =   0.40;   BMIX     =  1.00
     AMIX_MAG =   1.60;   BMIX_MAG =  1.00
     AMIN     =   0.10
     WC   =   100.;   INIMIX=   1;  MIXPRE=   1;  MAXMIX= -45

 Intra band minimization:
   WEIMIN = 0.0000     energy-eigenvalue tresh-hold
   EBREAK =  0.21E-10  absolut break condition
   DEPER  =   0.30     relativ break condition  

   TIME   =   0.40     timestep for ELM

  volume/ion in A,a.u.               =       7.74        52.24
  Fermi-wavevector in a.u.,A,eV,Ry     =   1.445886  2.732328 28.444155  2.090586
  Thomas-Fermi vector in A             =   2.564017
 
 Write flags
   LWAVE        =      T    write WAVECAR
   LDOWNSAMPLE  =      F    k-point downsampling of WAVECAR
   LCHARG       =      T    write CHGCAR
   LVTOT        =      F    write LOCPOT, total local potential
   LVHAR        =      F    write LOCPOT, Hartree potential only
   LELF         =      F    write electronic localiz. function (ELF)
   LORBIT       =      0    0 simple, 1 ext, 2 COOP (PROOUT), +10 PAW based schemes


 Dipole corrections
   LMONO  =      F    monopole corrections only (constant potential shift)
   LDIPOL =      F    correct potential (dipole corrections)
   IDIPOL =      0    1-x, 2-y, 3-z, 4-all directions 
   EPSILON=  1.0000000 bulk dielectric constant

 Exchange correlation treatment:
   GGA     =    --    GGA type
   LEXCH   =     8    internal setting for exchange type
   LIBXC   =     F    Libxc                    
   VOSKOWN =     1    Vosko Wilk Nusair interpolation
   EXXOEP  =     0    0=HF, 1=EXX-LHF (local Hartree Fock) 2=EXX OEP
   LHFCALC =     T    Hartree Fock is set to
   LSYMGRAD=     F    symmetrize gradient (conserves proper symmetry)
   PRECFOCK=normal    Normal, Fast or Accurate (Low or Medium for compatibility)
   LRHFCALC=     F    long range Hartree Fock
   LRSCOR  =     F    long range correlation only (use DFT for short range part)
   LTHOMAS =     F    Thomas Fermi screening in HF
   LMODELHF=     F    short range full HF, long range fraction AEXX
   FOCKCORR=     1    mode to apply convergence corrections
   LFOCKACE=     T    use Adeptively-Compressed-Exchange operator
   ENCUT4O =  -1.0   cutoff for four orbital integrals eV
   LMAXFOCK=     4    L truncation for augmentation on plane wave grid
   LMAXFOCKAE=  -1    L truncation for all-electron charge restoration on plane wave grid
   NMAXFOCKAE=   1    number of basis functions for all-electron charge restoration
   LFOCKAEDFT=     F  apply the AE augmentation even for DFT
   NKREDX  =     1    reduce k-point grid by
   NKREDY  =     1    reduce k-point grid by
   NKREDZ  =     1    reduce k-point grid by
   SHIFTRED=     F    shift reduced grid of Gamma
   HFKIDENT=     F    idential grid for each k-point
   ODDONLY =     F    use only odd q-grid points
   EVENONLY=     F    use only even q-grid points
   HFALPHA =   -1.0000 decay constant for conv. correction
   MCALPHA =    0.0000 extent of test-charge in conv. correction in multipole expansion
   AEXX    =    0.2500 exact exchange contribution
   HFSCREEN=    0.2000 screening length (either q_TF or 0.3 A-1)
   HFSCREENC=   0.2000 screening length for correlation (either q_TF or 0.3 A-1)
   HFRCUT  =    0.0000 spherical cutoff for potential kernel
   ALDAX   =    0.7500 LDA exchange part
   AGGAX   =    0.7500 GGA exchange part
   ALDAC   =    1.0000 LDA correlation
   AGGAC   =    1.0000 GGA correlation
   ENCUTFOCK=  -1.0 apply spherical cutoff to Coloumb kernel
   NBANDSGWLOW=     1    first orbital included in HF term
   NBLOCK_FOCK=    64    blocking factor in FOCK_ACC

 Linear response parameters
   LEPSILON=     F    determine dielectric tensor
   LRPA    =     F    only Hartree local field effects (RPA)
   LNABLA  =     F    use nabla operator in PAW spheres
   LVEL    =     F    velocity operator in full k-point grid
   CSHIFT  =0.1000    complex shift for real part using Kramers Kronig
   OMEGAMAX=  -1.0    maximum frequency
   DEG_THRESHOLD= 0.2000000E-02 threshold for treating states as degnerate
   RTIME   =   -0.100 relaxation time in fs
  (WPLASMAI=    0.000 imaginary part of plasma frequency in eV, 0.658/RTIME)
   DFIELD  = 0.0000000 0.0000000 0.0000000 field for delta impulse in time
 
  Optional k-point grid parameters
   LKPOINTS_OPT  =     F    use optional k-point grid
   KPOINTS_OPT_MODE=     1    mode for optional k-point grid
 
 Orbital magnetization related:
   ORBITALMAG=     F  switch on orbital magnetization
   LCHIMAG   =     F  perturbation theory with respect to B field
   DQ        =  0.001000  dq finite difference perturbation B field
   LLRAUG    =     F  two centre corrections for induced B field



--------------------------------------------------------------------------------------------------------


 Static calculation
 charge density and potential will be updated during run
 non-spin polarized calculation
 Conjugate gradient for all bands (Freysoldt, et al. PRB 79, 241103 (2009))
 perform sub-space diagonalisation
    before iterative eigenvector-optimisation
 modified Broyden-mixing scheme, WC =      100.0
 initial mixing is a Kerker type mixing with AMIX =  0.4000 and BMIX =      1.0000
 Hartree-type preconditioning will be used
 using additional bands          104
 reciprocal scheme for non local part
 use partial core corrections
 no Harris-corrections to forces 
 use gradient corrections 
 use of overlap-Matrix (Vanderbilt PP)
 Methfessel and Paxton  Order N= 1 SIGMA  =   0.20


--------------------------------------------------------------------------------------------------------


  energy-cutoff  :      400.00
  volume of cell :       46.45
      direct lattice vectors                 reciprocal lattice vectors
     4.173800000  0.000000000  0.000000000     0.239589822  0.000000000  0.000000000
     0.000000000  4.173800000  0.000000000     0.000000000  0.239589822  0.000000000
     0.000000000  0.000000000  2.666300000     0.000000000  0.000000000  0.375051570

  length of vectors
     4.173800000  4.173800000  2.666300000     0.239589822  0.239589822  0.375051570


 
 old parameters found on file WAVECAR:
  energy-cutoff  :      400.00
  volume of cell :       46.45
      direct lattice vectors                 reciprocal lattice vectors
     4.173800000  0.000000000  0.000000000     0.239589822  0.000000000  0.000000000
     0.000000000  4.173800000  0.000000000     0.000000000  0.239589822  0.000000000
     0.000000000  0.000000000  2.666300000     0.000000000  0.000000000  0.375051570

  length of vectors

 
 k-points in units of 2pi/SCALE and weight: Automatic mesh                          
   0.00000000  0.00000000  0.00000000       0.013
   0.05989746  0.00000000  0.00000000       0.050
   0.11979491  0.00000000  0.00000000       0.025
   0.05989746  0.05989746  0.00000000       0.050
   0.11979491  0.05989746  0.00000000       0.050
   0.11979491  0.11979491  0.00000000       0.013
   0.00000000  0.00000000  0.07501031       0.025
   0.05989746  0.00000000  0.07501031       0.100
   0.11979491  0.00000000  0.07501031       0.050
   0.05989746  0.05989746  0.07501031       0.100
   0.11979491  0.05989746  0.07501031       0.100
   0.11979491  0.11979491  0.07501031       0.025
   0.00000000  0.00000000  0.15002063       0.025
   0.05989746  0.00000000  0.15002063       0.100
   0.11979491  0.00000000  0.15002063       0.050
   0.05989746  0.05989746  0.15002063       0.100
   0.11979491  0.05989746  0.15002063       0.100
   0.11979491  0.11979491  0.15002063       0.025
 
 k-points in reciprocal lattice and weights: Automatic mesh                          
   0.00000000  0.00000000  0.00000000       0.013
   0.25000000  0.00000000  0.00000000       0.050
   0.50000000  0.00000000  0.00000000       0.025
   0.25000000  0.25000000  0.00000000       0.050
   0.50000000  0.25000000  0.00000000       0.050
   0.50000000  0.50000000  0.00000000       0.013
   0.00000000  0.00000000  0.20000000       0.025
   0.25000000  0.00000000  0.20000000       0.100
   0.50000000  0.00000000  0.20000000       0.050
   0.25000000  0.25000000  0.20000000       0.100
   0.50000000  0.25000000  0.20000000       0.100
   0.50000000  0.50000000  0.20000000       0.025
   0.00000000  0.00000000  0.40000000       0.025
   0.25000000  0.00000000  0.40000000       0.100
   0.50000000  0.00000000  0.40000000       0.050
   0.25000000  0.25000000  0.40000000       0.100
   0.50000000  0.25000000  0.40000000       0.100
   0.50000000  0.50000000  0.40000000       0.025
 
 position of ions in fractional coordinates (direct lattice) 
   0.00000000  0.00000000  0.00000000
   0.50000000  0.50000000  0.50000000
   0.30670000  0.30670000  0.00000000
   0.80670000  0.19330000  0.50000000
   0.19330000  0.80670000  0.50000000
   0.69330000  0.69330000  0.00000000
 
 position of ions in cartesian coordinates  (Angst):
   0.00000000  0.00000000  0.00000000
   2.08690000  2.08690000  1.33315000
   1.28010446  1.28010446  0.00000000
   3.36700446  0.80679554  1.33315000
   0.80679554  3.36700446  1.33315000
   2.89369554  2.89369554  0.00000000
 


--------------------------------------------------------------------------------------------------------


 k-point   1 :   0.0000 0.0000 0.0000  plane waves:     825
 k-point   2 :   0.2500 0.0000 0.0000  plane waves:     846
 k-point   3 :   0.5000 0.0000 0.0000  plane waves:     858
 k-point   4 :   0.2500 0.2500 0.0000  plane waves:     848
 k-point   5 :   0.5000 0.2500 0.0000  plane waves:     852
 k-point   6 :   0.5000 0.5000 0.0000  plane waves:     868
 k-point   7 :   0.0000 0.0000 0.2000  plane waves:     853
 k-point   8 :   0.2500 0.0000 0.2000  plane waves:     844
 k-point   9 :   0.5000 0.0000 0.2000  plane waves:     832
 k-point  10 :   0.2500 0.2500 0.2000  plane waves:     842
 k-point  11 :   0.5000 0.2500 0.2000  plane waves:     846
 k-point  12 :   0.5000 0.5000 0.2000  plane waves:     868
 k-point  13 :   0.0000 0.0000 0.4000  plane waves:     860
 k-point  14 :   0.2500 0.0000 0.4000  plane waves:     837
 k-point  15 :   0.5000 0.0000 0.4000  plane waves:     838
 k-point  16 :   0.2500 0.2500 0.4000  plane waves:     833
 k-point  17 :   0.5000 0.2500 0.4000  plane waves:     846
 k-point  18 :   0.5000 0.5000 0.4000  plane waves:     828

 maximum and minimum number of plane-waves per node :       868      825

 maximum number of plane-waves:       868
 maximum index in each direction: 
   IXMAX=    6   IYMAX=    6   IZMAX=    4
   IXMIN=   -7   IYMIN=   -7   IZMIN=   -4

 The following grids will avoid any aliasing or wrap around errors in the Hartre
 e energy
  - symmetry arguments have not been applied
  - exchange correlation energies might require even more grid points
  - we recommend to set PREC=Normal or Accurate and rely on VASP defaults
 WARNING: aliasing errors must be expected set NGX to    28 to avoid them
 WARNING: aliasing errors must be expected set NGY to    28 to avoid them
 WARNING: aliasing errors must be expected set NGZ to    18 to avoid them

 serial   3D FFT for wavefunctions
 parallel 3D FFT for charge:
    minimum data exchange during FFTs selected (reduces bandwidth)

 
 Radii for the augmentation spheres in the non-local exchange
 for species   1 augmentation radius   1.237 (default was   0.989)
       energy cutoff for augmentation   1600.0
 for species   2 augmentation radius   0.902 (default was   0.722)
       energy cutoff for augmentation   1600.0
 Maximum index for augmentation-charges in exchange          969
  SETUP_FOCK is finished

 total amount of memory used by VASP MPI-rank0    57543. kBytes
=======================================================================

   base      :      30000. kBytes
   nonl-proj :       2083. kBytes
   fftplans  :        427. kBytes
   grid      :        889. kBytes
   one-center:         18. kBytes
   HF        :          9. kBytes
   nonlr-proj:        375. kBytes
   wavefun   :      23742. kBytes
 
 Broyden mixing: mesh for mixing (old mesh)
   NGX = 13   NGY = 13   NGZ =  9
  (NGX  = 40   NGY  = 40   NGZ  = 28)
  gives a total of   1521 points

 charge density for first step will be calculated from the start-wavefunctions


--------------------------------------------------------------------------------------------------------


 Maximum index for augmentation-charges         1011 (set IRDMAX)


--------------------------------------------------------------------------------------------------------


 initial charge from wavefunction
 First call to EWALD:  gamma=   0.493
 Maximum number of real-space cells 2x 2x 4
 Maximum number of reciprocal cells 3x 3x 2



--------------------------------------- Iteration      1(   1)  ---------------------------------------