vasp.6.2.1 16May21 (build Apr 11 2022 11:03:26) complex MD_VERSION_INFO: Compiled 2022-04-11T18:25:55-UTC in devlin.sd.materialsdesign. com:/home/medea2/data/build/vasp6.2.1/16685/x86_64/src/src/build/gpu from svn 1 6685 This VASP executable licensed from Materials Design, Inc. executed on Lin64 date 2024.08.19 01:10:38 running on 2 total cores distrk: each k-point on 2 cores, 1 groups distr: one band on NCORE= 1 cores, 2 groups -------------------------------------------------------------------------------------------------------- INCAR: SYSTEM = No title PREC = Normal ENCUT = 400.000 IBRION = -1 NSW = 0 ISIF = 2 NELMIN = 2 EDIFF = 1.0e-05 EDIFFG = -0.02 VOSKOWN = 1 NBLOCK = 1 NWRITE = 1 NELM = 95 LHFCALC = .TRUE. HFSCREEN = 0.2 PRECFOCK = Normal ALGO = Damped TIME = 0.4 LMAXFOCK = 4 NKREDX = 1 NKREDY = 1 NKREDZ = 1 ISPIN = 1 INIWAV = 1 ISTART = 0 ICHARG = 2 LWAVE = .TRUE. LCHARG = .FALSE. ADDGRID = .FALSE. ISMEAR = 1 SIGMA = 0.2 LREAL = Auto LSCALAPACK = .FALSE. RWIGS = 1.11 0.73 0.77 0.32 0.75 NPAR = 2 POTCAR: PAW_PBE Si 05Jan2001 POTCAR: PAW_PBE O 08Apr2002 POTCAR: PAW_PBE C 08Apr2002 POTCAR: PAW_PBE H 15Jun2001 POTCAR: PAW_PBE N 08Apr2002 POTCAR: PAW_PBE Si 05Jan2001 local pseudopotential read in partial core-charges read in partial kinetic energy density read in atomic valenz-charges read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in PAW grid and wavefunctions read in number of l-projection operators is LMAX = 4 number of lm-projection operators is LMMAX = 8 POTCAR: PAW_PBE O 08Apr2002 local pseudopotential read in partial core-charges read in partial kinetic energy density read in kinetic energy density of atom read in atomic valenz-charges read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in PAW grid and wavefunctions read in number of l-projection operators is LMAX = 4 number of lm-projection operators is LMMAX = 8 POTCAR: PAW_PBE C 08Apr2002 local pseudopotential read in partial core-charges read in partial kinetic energy density read in atomic valenz-charges read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in PAW grid and wavefunctions read in number of l-projection operators is LMAX = 4 number of lm-projection operators is LMMAX = 8 POTCAR: PAW_PBE H 15Jun2001 local pseudopotential read in atomic valenz-charges read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in PAW grid and wavefunctions read in number of l-projection operators is LMAX = 3 number of lm-projection operators is LMMAX = 5 POTCAR: PAW_PBE N 08Apr2002 local pseudopotential read in partial core-charges read in partial kinetic energy density read in atomic valenz-charges read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in PAW grid and wavefunctions read in number of l-projection operators is LMAX = 4 number of lm-projection operators is LMMAX = 8 Optimization of the real space projectors (new method) maximal supplied QI-value = 19.84 optimisation between [QCUT,QGAM] = [ 10.12, 20.44] = [ 28.68,116.96] Ry Optimized for a Real-space Cutoff 1.23 Angstroem l n(q) QCUT max X(q) W(low)/X(q) W(high)/X(q) e(spline) 0 7 10.119 159.560 0.56E-04 0.22E-03 0.45E-07 0 7 10.119 115.863 0.56E-04 0.21E-03 0.45E-07 1 7 10.119 88.339 0.34E-03 0.49E-03 0.11E-06 1 7 10.119 48.592 0.33E-03 0.48E-03 0.11E-06 Optimization of the real space projectors (new method) maximal supplied QI-value = 24.76 optimisation between [QCUT,QGAM] = [ 10.15, 20.30] = [ 28.85,115.39] Ry Optimized for a Real-space Cutoff 1.38 Angstroem l n(q) QCUT max X(q) W(low)/X(q) W(high)/X(q) e(spline) 0 8 10.150 20.381 0.22E-03 0.32E-03 0.29E-06 0 8 10.150 15.268 0.23E-03 0.35E-03 0.30E-06 1 8 10.150 5.964 0.46E-03 0.53E-03 0.21E-06 1 8 10.150 5.382 0.38E-03 0.45E-03 0.19E-06 Optimization of the real space projectors (new method) maximal supplied QI-value = 25.13 optimisation between [QCUT,QGAM] = [ 10.05, 20.36] = [ 28.30,116.06] Ry Optimized for a Real-space Cutoff 1.30 Angstroem l n(q) QCUT max X(q) W(low)/X(q) W(high)/X(q) e(spline) 0 8 10.053 115.676 0.49E-03 0.72E-03 0.18E-06 0 8 10.053 87.132 0.49E-03 0.71E-03 0.18E-06 1 7 10.053 4.429 0.32E-03 0.31E-03 0.18E-06 1 7 10.053 2.733 0.23E-03 0.19E-03 0.20E-06 Optimization of the real space projectors (new method) maximal supplied QI-value = 34.20 optimisation between [QCUT,QGAM] = [ 9.92, 20.18] = [ 27.55,114.04] Ry Optimized for a Real-space Cutoff 1.26 Angstroem l n(q) QCUT max X(q) W(low)/X(q) W(high)/X(q) e(spline) 0 8 9.919 19.460 0.50E-03 0.23E-03 0.29E-06 0 8 9.919 12.209 0.48E-03 0.23E-03 0.28E-06 1 7 9.919 4.655 0.17E-03 0.75E-03 0.30E-06 Optimization of the real space projectors (new method) maximal supplied QI-value = 25.13 optimisation between [QCUT,QGAM] = [ 10.05, 20.36] = [ 28.30,116.06] Ry Optimized for a Real-space Cutoff 1.65 Angstroem l n(q) QCUT max X(q) W(low)/X(q) W(high)/X(q) e(spline) 0 10 10.053 79.467 0.76E-04 0.72E-04 0.56E-06 0 10 10.053 66.151 0.76E-04 0.72E-04 0.55E-06 1 10 10.053 8.350 0.25E-03 0.92E-03 0.41E-05 1 10 10.053 5.531 0.27E-03 0.10E-02 0.45E-05 PAW_PBE Si 05Jan2001 : energy of atom 1 EATOM= -103.0669 kinetic energy error for atom= 0.0012 (will be added to EATOM!!) PAW_PBE O 08Apr2002 : energy of atom 2 EATOM= -432.3788 kinetic energy error for atom= 0.1156 (will be added to EATOM!!) PAW_PBE C 08Apr2002 : energy of atom 3 EATOM= -147.1560 kinetic energy error for atom= 0.0288 (will be added to EATOM!!) PAW_PBE H 15Jun2001 : energy of atom 4 EATOM= -12.4884 kinetic energy error for atom= 0.0098 (will be added to EATOM!!) PAW_PBE N 08Apr2002 : energy of atom 5 EATOM= -264.5486 kinetic energy error for atom= 0.0736 (will be added to EATOM!!) POSCAR: No title positions in direct lattice No initial velocities read in exchange correlation table for LEXCH = 8 RHO(1)= 0.500 N(1) = 2000 RHO(2)= 100.500 N(2) = 4000 -------------------------------------------------------------------------------------------------------- ion position nearest neighbor table 1 0.395 0.452 0.502- 3 1.65 2 1.68 5 1.76 7 1.77 2 0.476 0.482 0.513- 4 1.41 1 1.68 3 0.367 0.352 0.477- 6 1.39 1 1.65 4 0.500 0.478 0.425- 10 1.07 8 1.08 9 1.10 2 1.41 5 0.365 0.501 0.601- 11 1.10 13 1.12 12 1.14 1 1.76 6 0.377 0.280 0.535- 15 1.08 16 1.13 14 1.14 3 1.39 7 0.355 0.508 0.412- 17 1.06 18 1.07 19 1.08 1 1.77 8 0.492 0.415 0.391- 4 1.08 9 0.469 0.524 0.386- 4 1.10 10 0.553 0.488 0.422- 4 1.07 11 0.311 0.484 0.607- 5 1.10 12 0.404 0.478 0.651- 5 1.14 13 0.379 0.568 0.575- 5 1.12 14 0.356 0.216 0.504- 6 1.14 15 0.430 0.267 0.541- 6 1.08 16 0.349 0.295 0.599- 6 1.13 17 0.361 0.578 0.412- 7 1.06 18 0.368 0.474 0.352- 7 1.07 19 0.304 0.488 0.428- 7 1.08 20 0.514 0.628 0.429- 22 1.05 21 0.524 0.643 0.534- 22 1.04 22 0.491 0.661 0.484- 21 1.04 20 1.05 LATTYP: Found a simple tetragonal cell. ALAT = 15.0000000000 C/A-ratio = 1.3333333333 Lattice vectors: A1 = ( 0.0000000000, 15.0000000000, 0.0000000000) A2 = ( 0.0000000000, 0.0000000000, 15.0000000000) A3 = ( 20.0000000000, 0.0000000000, 0.0000000000) Analysis of symmetry for initial positions (statically): ===================================================================== Subroutine PRICEL returns: Original cell was already a primitive cell. Routine SETGRP: Setting up the symmetry group for a simple tetragonal supercell. Subroutine GETGRP returns: Found 1 space group operations (whereof 1 operations were pure point group operations) out of a pool of 16 trial point group operations. The static configuration has the point symmetry C_1 . Analysis of symmetry for dynamics (positions and initial velocities): ===================================================================== Subroutine PRICEL returns: Original cell was already a primitive cell. Routine SETGRP: Setting up the symmetry group for a simple tetragonal supercell. Subroutine GETGRP returns: Found 1 space group operations (whereof 1 operations were pure point group operations) out of a pool of 16 trial point group operations. The dynamic configuration has the point symmetry C_1 . Subroutine INISYM returns: Found 1 space group operations (whereof 1 operations are pure point group operations), and found 1 'primitive' translations ---------------------------------------------------------------------------------------- Primitive cell volume of cell : 4500.0000 direct lattice vectors reciprocal lattice vectors 20.000000000 0.000000000 0.000000000 0.050000000 0.000000000 0.000000000 0.000000000 15.000000000 0.000000000 0.000000000 0.066666667 0.000000000 0.000000000 0.000000000 15.000000000 0.000000000 0.000000000 0.066666667 length of vectors 20.000000000 15.000000000 15.000000000 0.050000000 0.066666667 0.066666667 position of ions in fractional coordinates (direct lattice) 0.395228530 0.452228490 0.501517400 0.475882180 0.481786970 0.513499060 0.367499440 0.351640210 0.477139580 0.499737570 0.478076640 0.424836210 0.364578860 0.500585750 0.600679860 0.376632770 0.279776750 0.534832080 0.355020500 0.507975050 0.412378520 0.491753570 0.415178180 0.391394380 0.468566100 0.523913230 0.386059500 0.552695100 0.487879470 0.421668720 0.311376350 0.484247010 0.606914320 0.403904120 0.477602030 0.650821220 0.379425070 0.567625020 0.575136400 0.356151970 0.216078950 0.504084160 0.429833250 0.267314820 0.541338220 0.348953090 0.294668410 0.598713950 0.360901590 0.578389530 0.412073710 0.367766420 0.474057830 0.351603900 0.304461330 0.488288280 0.427972000 0.513636180 0.628404980 0.429486230 0.523651400 0.642969870 0.534428520 0.491450300 0.661304270 0.483585880 ion indices of the primitive-cell ions primitive index ion index 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 ---------------------------------------------------------------------------------------- KPOINTS: Automatic mesh Automatic generation of k-mesh. Grid dimensions read from file: generate k-points for: 1 1 1 Generating k-lattice: Cartesian coordinates Fractional coordinates (reciprocal lattice) 0.050000000 0.000000000 0.000000000 1.000000000 0.000000000 0.000000000 0.000000000 0.066666667 0.000000000 0.000000000 1.000000000 0.000000000 0.000000000 0.000000000 0.066666667 0.000000000 0.000000000 1.000000000 Length of vectors 0.050000000 0.066666667 0.066666667 Shift w.r.t. Gamma in fractional coordinates (k-lattice) 0.000000000 0.000000000 0.000000000 Subroutine IBZKPT returns following result: =========================================== Found 1 irreducible k-points: Following reciprocal coordinates: Coordinates Weight 0.000000 0.000000 0.000000 1.000000 Following cartesian coordinates: Coordinates Weight 0.000000 0.000000 0.000000 1.000000 Subroutine IBZKPT_HF returns following result: ============================================== Found 1 k-points in 1st BZ the following 1 k-points will be used (e.g. in the exchange kernel) Following reciprocal coordinates: # in IRBZ 0.000000 0.000000 0.000000 1.00000000 1 t-inv F -------------------------------------------------------------------------------------------------------- Dimension of arrays: k-points NKPTS = 1 k-points in BZ NKDIM = 1 number of bands NBANDS= 38 number of dos NEDOS = 301 number of ions NIONS = 22 non local maximal LDIM = 4 non local SUM 2l+1 LMDIM = 8 total plane-waves NPLWV = 627200 max r-space proj IRMAX = 2665 max aug-charges IRDMAX= 4859 dimension x,y,z NGX = 98 NGY = 80 NGZ = 80 dimension x,y,z NGXF= 196 NGYF= 160 NGZF= 160 support grid NGXF= 196 NGYF= 160 NGZF= 160 ions per type = 1 2 4 14 1 NGX,Y,Z is equivalent to a cutoff of 8.15, 8.87, 8.87 a.u. NGXF,Y,Z is equivalent to a cutoff of 16.29, 17.73, 17.73 a.u. SYSTEM = No title POSCAR = No title Startparameter for this run: NWRITE = 1 write-flag & timer PREC = normal normal or accurate (medium, high low for compatibility) ISTART = 0 job : 0-new 1-cont 2-samecut ICHARG = 2 charge: 1-file 2-atom 10-const ISPIN = 1 spin polarized calculation? LNONCOLLINEAR = F non collinear calculations LSORBIT = F spin-orbit coupling INIWAV = 1 electr: 0-lowe 1-rand 2-diag LASPH = F aspherical Exc in radial PAW Electronic Relaxation 1 ENCUT = 400.0 eV 29.40 Ry 5.42 a.u. 32.61 24.46 24.46*2*pi/ulx,y,z ENINI = 400.0 initial cutoff ENAUG = 644.9 eV augmentation charge cutoff NELM = 95; NELMIN= 2; NELMDL= -5 # of ELM steps EDIFF = 0.1E-04 stopping-criterion for ELM LREAL = T real-space projection NLSPLINE = F spline interpolate recip. space projectors LCOMPAT= F compatible to vasp.4.4 GGA_COMPAT = T GGA compatible to vasp.4.4-vasp.4.6 LMAXPAW = -100 max onsite density LMAXMIX = 2 max onsite mixed and CHGCAR VOSKOWN= 1 Vosko Wilk Nusair interpolation ROPT = -0.00050 -0.00050 -0.00050 -0.00050 ROPT = -0.00050 Ionic relaxation EDIFFG = -.2E-01 stopping-criterion for IOM NSW = 0 number of steps for IOM NBLOCK = 1; KBLOCK = 1 inner block; outer block IBRION = -1 ionic relax: 0-MD 1-quasi-New 2-CG NFREE = 0 steps in history (QN), initial steepest desc. (CG) ISIF = 2 stress and relaxation IWAVPR = 10 prediction: 0-non 1-charg 2-wave 3-comb ISYM = 3 0-nonsym 1-usesym 2-fastsym LCORR = T Harris-Foulkes like correction to forces POTIM = 0.5000 time-step for ionic-motion TEIN = 0.0 initial temperature TEBEG = 0.0; TEEND = 0.0 temperature during run SMASS = -3.00 Nose mass-parameter (am) estimated Nose-frequenzy (Omega) = 0.10E-29 period in steps = 0.13E+47 mass= -0.914E-26a.u. SCALEE = 1.0000 scale energy and forces NPACO = 256; APACO = 16.0 distance and # of slots for P.C. PSTRESS= 0.0 pullay stress Mass of Ions in am POMASS = 28.09 16.00 12.01 1.00 14.00 Ionic Valenz ZVAL = 4.00 6.00 4.00 1.00 5.00 Atomic Wigner-Seitz radii RWIGS = 1.11 0.73 0.77 0.32 0.75 virtual crystal weights VCA = 1.00 1.00 1.00 1.00 1.00 NELECT = 51.0000 total number of electrons NUPDOWN= -1.0000 fix difference up-down DOS related values: EMIN = 10.00; EMAX =-10.00 energy-range for DOS EFERMI = 0.00 ISMEAR = 1; SIGMA = 0.20 broadening in eV -4-tet -1-fermi 0-gaus Electronic relaxation 2 (details) IALGO = 53 algorithm LDIAG = T sub-space diagonalisation (order eigenvalues) LSUBROT= F optimize rotation matrix (better conditioning) TURBO = 0 0=normal 1=particle mesh IRESTART = 0 0=no restart 2=restart with 2 vectors NREBOOT = 0 no. of reboots NMIN = 0 reboot dimension EREF = 0.00 reference energy to select bands IMIX = 4 mixing-type and parameters AMIX = 0.40; BMIX = 1.00 AMIX_MAG = 1.60; BMIX_MAG = 1.00 AMIN = 0.10 WC = 100.; INIMIX= 1; MIXPRE= 1; MAXMIX= -45 Intra band minimization: WEIMIN = 0.0000 energy-eigenvalue tresh-hold EBREAK = 0.66E-07 absolut break condition DEPER = 0.30 relativ break condition TIME = 0.40 timestep for ELM volume/ion in A,a.u. = 204.55 1380.34 Fermi-wavevector in a.u.,A,eV,Ry = 0.367729 0.694906 1.839838 0.135224 Thomas-Fermi vector in A = 1.293057 Write flags LWAVE = T write WAVECAR LDOWNSAMPLE = F k-point downsampling of WAVECAR LCHARG = F write CHGCAR LVTOT = F write LOCPOT, total local potential LVHAR = F write LOCPOT, Hartree potential only LELF = F write electronic localiz. function (ELF) LORBIT = 0 0 simple, 1 ext, 2 COOP (PROOUT), +10 PAW based schemes Dipole corrections LMONO = F monopole corrections only (constant potential shift) LDIPOL = F correct potential (dipole corrections) IDIPOL = 0 1-x, 2-y, 3-z, 4-all directions EPSILON= 1.0000000 bulk dielectric constant Exchange correlation treatment: GGA = -- GGA type LEXCH = 8 internal setting for exchange type VOSKOWN= 1 Vosko Wilk Nusair interpolation EXXOEP = 0 0=HF, 1=EXX-LHF (local Hartree Fock) 2=EXX OEP LHFCALC = T Hartree Fock is set to LSYMGRAD= F symmetrize gradient (conserves proper symmetry) PRECFOCK=normal Normal, Fast or Accurate (Low or Medium for compatibility) LRHFCALC= F long range Hartree Fock LRSCOR = F long range correlation only (use DFT for short range part) LTHOMAS = F Thomas Fermi screening in HF LMODELHF= F short range full HF, long range fraction AEXX ENCUT4O = -1.0 cutoff for four orbital integrals eV LMAXFOCK= 4 L truncation for augmentation on plane wave grid LMAXFOCKAE= -1 L truncation for all-electron charge restoration on plane wave grid NMAXFOCKAE= 1 number of basis functions for all-electron charge restoration LFOCKAEDFT= F apply the AE augmentation even for DFT NKREDX = 1 reduce k-point grid by NKREDY = 1 reduce k-point grid by NKREDZ = 1 reduce k-point grid by SHIFTRED= F shift reduced grid of Gamma HFKIDENT= F idential grid for each k-point ODDONLY = F use only odd q-grid points EVENONLY= F use only even q-grid points HFALPHA = -1.0000 decay constant for conv. correction MCALPHA = 0.0000 extent of test-charge in conv. correction in multipole expansion AEXX = 0.2500 exact exchange contribution HFSCREEN= 0.2000 screening length (either q_TF or 0.3 A-1) HFSCREENC= 0.2000 screening length for correlation (either q_TF or 0.3 A-1) HFRCUT = 0.0000 spherical cutoff for potential kernel ALDAX = 0.7500 LDA exchange part AGGAX = 0.7500 GGA exchange part ALDAC = 1.0000 LDA correlation AGGAC = 1.0000 GGA correlation NBANDSGWLOW= 1 first orbital included in HF term ENCUTFOCK= -1.0 apply spherical cutoff to Coloumb kernel Linear response parameters LEPSILON= F determine dielectric tensor LRPA = F only Hartree local field effects (RPA) LNABLA = F use nabla operator in PAW spheres LVEL = F velocity operator in full k-point grid LINTERFAST= F fast interpolation KINTER = 0 interpolate to denser k-point grid CSHIFT =0.1000 complex shift for real part using Kramers Kronig OMEGAMAX= -1.0 maximum frequency DEG_THRESHOLD= 0.2000000E-02 threshold for treating states as degnerate RTIME = -0.100 relaxation time in fs (WPLASMAI= 0.000 imaginary part of plasma frequency in eV, 0.658/RTIME) DFIELD = 0.0000000 0.0000000 0.0000000 field for delta impulse in time Orbital magnetization related: ORBITALMAG= F switch on orbital magnetization LCHIMAG = F perturbation theory with respect to B field DQ = 0.001000 dq finite difference perturbation B field LLRAUG = F two centre corrections for induced B field -------------------------------------------------------------------------------------------------------- Static calculation charge density and potential will be updated during run non-spin polarized calculation Conjugate gradient for all bands (Freysoldt, et al. PRB 79, 241103 (2009)) perform sub-space diagonalisation before iterative eigenvector-optimisation modified Broyden-mixing scheme, WC = 100.0 initial mixing is a Kerker type mixing with AMIX = 0.4000 and BMIX = 1.0000 Hartree-type preconditioning will be used using additional bands 12 real space projection scheme for non local part use partial core corrections no Harris-corrections to forces use gradient corrections use of overlap-Matrix (Vanderbilt PP) Methfessel and Paxton Order N= 1 SIGMA = 0.20 -------------------------------------------------------------------------------------------------------- energy-cutoff : 400.00 volume of cell : 4500.00 direct lattice vectors reciprocal lattice vectors 20.000000000 0.000000000 0.000000000 0.050000000 0.000000000 0.000000000 0.000000000 15.000000000 0.000000000 0.000000000 0.066666667 0.000000000 0.000000000 0.000000000 15.000000000 0.000000000 0.000000000 0.066666667 length of vectors 20.000000000 15.000000000 15.000000000 0.050000000 0.066666667 0.066666667 k-points in units of 2pi/SCALE and weight: Automatic mesh 0.00000000 0.00000000 0.00000000 1.000 k-points in reciprocal lattice and weights: Automatic mesh 0.00000000 0.00000000 0.00000000 1.000 position of ions in fractional coordinates (direct lattice) 0.39522853 0.45222849 0.50151740 0.47588218 0.48178697 0.51349906 0.36749944 0.35164021 0.47713958 0.49973757 0.47807664 0.42483621 0.36457886 0.50058575 0.60067986 0.37663277 0.27977675 0.53483208 0.35502050 0.50797505 0.41237852 0.49175357 0.41517818 0.39139438 0.46856610 0.52391323 0.38605950 0.55269510 0.48787947 0.42166872 0.31137635 0.48424701 0.60691432 0.40390412 0.47760203 0.65082122 0.37942507 0.56762502 0.57513640 0.35615197 0.21607895 0.50408416 0.42983325 0.26731482 0.54133822 0.34895309 0.29466841 0.59871395 0.36090159 0.57838953 0.41207371 0.36776642 0.47405783 0.35160390 0.30446133 0.48828828 0.42797200 0.51363618 0.62840498 0.42948623 0.52365140 0.64296987 0.53442852 0.49145030 0.66130427 0.48358588 position of ions in cartesian coordinates (Angst): 7.90457060 6.78342735 7.52276100 9.51764360 7.22680455 7.70248590 7.34998880 5.27460315 7.15709370 9.99475140 7.17114960 6.37254315 7.29157720 7.50878625 9.01019790 7.53265540 4.19665125 8.02248120 7.10041000 7.61962575 6.18567780 9.83507140 6.22767270 5.87091570 9.37132200 7.85869845 5.79089250 11.05390200 7.31819205 6.32503080 6.22752700 7.26370515 9.10371480 8.07808240 7.16403045 9.76231830 7.58850140 8.51437530 8.62704600 7.12303940 3.24118425 7.56126240 8.59666500 4.00972230 8.12007330 6.97906180 4.42002615 8.98070925 7.21803180 8.67584295 6.18110565 7.35532840 7.11086745 5.27405850 6.08922660 7.32432420 6.41958000 10.27272360 9.42607470 6.44229345 10.47302800 9.64454805 8.01642780 9.82900600 9.91956405 7.25378820 -------------------------------------------------------------------------------------------------------- k-point 1 : 0.0000 0.0000 0.0000 plane waves: 81909 maximum and minimum number of plane-waves per node : 81909 81909 maximum number of plane-waves: 81909 maximum index in each direction: IXMAX= 32 IYMAX= 24 IZMAX= 24 IXMIN= -32 IYMIN= -24 IZMIN= -24 The following grids will avoid any aliasing or wrap around errors in the Hartre e energy - symmetry arguments have not been applied - exchange correlation energies might require even more grid points - we recommend to set PREC=Normal or Accurate and rely on VASP defaults WARNING: aliasing errors must be expected set NGX to 140 to avoid them WARNING: aliasing errors must be expected set NGY to 98 to avoid them WARNING: aliasing errors must be expected set NGZ to 98 to avoid them serial 3D FFT for wavefunctions parallel 3D FFT for charge: minimum data exchange during FFTs selected (reduces bandwidth) Radii for the augmentation spheres in the non-local exchange for species 1 augmentation radius 1.237 (default was 0.989) energy cutoff for augmentation 1600.0 for species 2 augmentation radius 0.902 (default was 0.722) energy cutoff for augmentation 1600.0 for species 3 augmentation radius 0.874 (default was 0.699) energy cutoff for augmentation 1600.0 for species 4 augmentation radius 0.650 (default was 0.520) energy cutoff for augmentation 1600.0 for species 5 augmentation radius 0.886 (default was 0.709) energy cutoff for augmentation 1600.0 SETUP_FOCK is finished total amount of memory used by VASP MPI-rank0 423956. kBytes ======================================================================= base : 30000. kBytes nonlr-proj: 3413. kBytes fftplans : 87706. kBytes grid : 227924. kBytes one-center: 67. kBytes HF : 23. kBytes wavefun : 74823. kBytes Broyden mixing: mesh for mixing (old mesh) NGX = 65 NGY = 49 NGZ = 49 (NGX =196 NGY =160 NGZ =160) gives a total of 156065 points initial charge density was supplied: charge density of overlapping atoms calculated number of electron 51.0000000 magnetization keeping initial charge density in first step -------------------------------------------------------------------------------------------------------- Maximum index for non-local projection operator 2533 Maximum index for augmentation-charges 2262 (set IRDMAX) -------------------------------------------------------------------------------------------------------- First call to EWALD: gamma= 0.107 Maximum number of real-space cells 2x 3x 3 Maximum number of reciprocal cells 3x 3x 3 --------------------------------------- Iteration 1( 1) --------------------------------------- eigenvalue-minimisations : 98 total energy-change (2. order) : 0.5157313E+03 (-0.7331456E+03) number of electron 51.0000000 magnetization augmentation part 51.0000000 magnetization Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 2.18207684 Ewald energy TEWEN = 3400.96557041 -Hartree energ DENC = -4825.72059684 -exchange EXHF = 0.00000000 -V(xc)+E(xc) XCENC = 151.45235245 PAW double counting = 1450.12005463 -1743.20965345 entropy T*S EENTRO = -0.00933683 eigenvalues EBANDS = 108.18143581 atomic energy EATOM = 1971.76937252 --------------------------------------------------- free energy TOTEN = 515.73127553 eV energy without entropy = 515.74061236 energy(sigma->0) = 515.73438781 exchange ACFDT corr. = 0.00000000 see jH, gK, PRB 81, 115126 -------------------------------------------------------------------------------------------------------- --------------------------------------- Iteration 1( 2) --------------------------------------- eigenvalue-minimisations : 152 total energy-change (2. order) :-0.3653171E+03 (-0.3354577E+03) number of electron 51.0000000 magnetization augmentation part 51.0000000 magnetization Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 2.18207684 Ewald energy TEWEN = 3400.96557041 -Hartree energ DENC = -4825.72059684 -exchange EXHF = 0.00000000 -V(xc)+E(xc) XCENC = 151.45235245 PAW double counting = 1450.12005463 -1743.20965345 entropy T*S EENTRO = -0.03955004 eigenvalues EBANDS = -257.10544079 atomic energy EATOM = 1971.76937252 --------------------------------------------------- free energy TOTEN = 150.41418573 eV energy without entropy = 150.45373576 energy(sigma->0) = 150.42736907 exchange ACFDT corr. = 0.00000000 see jH, gK, PRB 81, 115126 -------------------------------------------------------------------------------------------------------- --------------------------------------- Iteration 1( 3) --------------------------------------- eigenvalue-minimisations : 152 total energy-change (2. order) :-0.3693466E+03 (-0.3475597E+03) number of electron 51.0000000 magnetization augmentation part 51.0000000 magnetization Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 2.18207684 Ewald energy TEWEN = 3400.96557041 -Hartree energ DENC = -4825.72059684 -exchange EXHF = 0.00000000 -V(xc)+E(xc) XCENC = 151.45235245 PAW double counting = 1450.12005463 -1743.20965345 entropy T*S EENTRO = -0.00389397 eigenvalues EBANDS = -626.48765227 atomic energy EATOM = 1971.76937252 --------------------------------------------------- free energy TOTEN = -218.93236969 eV energy without entropy = -218.92847572 energy(sigma->0) = -218.93107170 exchange ACFDT corr. = 0.00000000 see jH, gK, PRB 81, 115126 -------------------------------------------------------------------------------------------------------- --------------------------------------- Iteration 1( 4) --------------------------------------- eigenvalue-minimisations : 152 total energy-change (2. order) :-0.1857351E+03 (-0.1819930E+03) number of electron 51.0000000 magnetization augmentation part 51.0000000 magnetization Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 2.18207684 Ewald energy TEWEN = 3400.96557041 -Hartree energ DENC = -4825.72059684 -exchange EXHF = 0.00000000 -V(xc)+E(xc) XCENC = 151.45235245 PAW double counting = 1450.12005463 -1743.20965345 entropy T*S EENTRO = -0.05641896 eigenvalues EBANDS = -812.17022427 atomic energy EATOM = 1971.76937252 --------------------------------------------------- free energy TOTEN = -404.66746668 eV energy without entropy = -404.61104772 energy(sigma->0) = -404.64866036 exchange ACFDT corr. = 0.00000000 see jH, gK, PRB 81, 115126 -------------------------------------------------------------------------------------------------------- --------------------------------------- Iteration 1( 5) --------------------------------------- eigenvalue-minimisations : 152 total energy-change (2. order) : 0.2680815E+03 (-0.5350803E+02) number of electron 50.9999996 magnetization augmentation part 2.4652686 magnetization Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 2.18207684 Ewald energy TEWEN = 3400.96557041 -Hartree energ DENC = -4825.72059684 -exchange EXHF = 119.20048444 -V(xc)+E(xc) XCENC = 116.44543792 PAW double counting = 1479.12216159 -1469.61099418 entropy T*S EENTRO = -0.05641896 eigenvalues EBANDS = -930.88308774 atomic energy EATOM = 1971.76937252 --------------------------------------------------- free energy TOTEN = -136.58599400 eV energy without entropy = -136.52957504 energy(sigma->0) = -136.56718768 exchange ACFDT corr. = 0.00000000 see jH, gK, PRB 81, 115126 -------------------------------------------------------------------------------------------------------- --------------------------------------- Iteration 1( 6) --------------------------------------- eigenvalue-minimisations : 0 total energy-change (2. order) : 0.2867484E+02 (-0.4279276E+02) number of electron 50.9999992 magnetization augmentation part 2.0175599 magnetization Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 2.18207684 Ewald energy TEWEN = 3400.96557041 -Hartree energ DENC = -5215.01225121 -exchange EXHF = 127.96919260 -V(xc)+E(xc) XCENC = 132.59560321 PAW double counting = 6648.09708712 -6641.39639313 entropy T*S EENTRO = -0.05641896 eigenvalues EBANDS = -535.02498996 atomic energy EATOM = 1971.76937252 --------------------------------------------------- free energy TOTEN = -107.91115057 eV energy without entropy = -107.85473161 energy(sigma->0) = -107.89234425 exchange ACFDT corr. = -0.58456570 see jH, gK, PRB 81, 115126 -------------------------------------------------------------------------------------------------------- --------------------------------------- Iteration 1( 7) --------------------------------------- eigenvalue-minimisations : 0 total energy-change (2. order) :-0.1865424E+02 (-0.7168186E+01) number of electron 50.9999992 magnetization augmentation part 1.8933021 magnetization Free energy of the ion-electron system (eV) --------------------------------------------------- alpha Z PSCENC = 2.18207684 Ewald energy TEWEN = 3400.96557041 -Hartree energ DENC = -4960.95747413 -exchange EXHF = 117.31354944 -V(xc)+E(xc) XCENC = 122.58553361 PAW double counting = 6511.64693169 -6503.52662231 entropy T*S EENTRO = -0.05641896 eigenvalues EBANDS = -788.48790796 atomic energy EATOM = 1971.76937252 --------------------------------------------------- free energy TOTEN = -126.56538886 eV energy without entropy = -126.50896990 energy(sigma->0) = -126.54658254 exchange ACFDT corr. = -0.56282127 see jH, gK, PRB 81, 115126 -------------------------------------------------------------------------------------------------------- --------------------------------------- Iteration 1( 8) ---------------------------------------